Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Haruo Akashi, ${ }^{\mathbf{a} *}$ Masayasu Mori ${ }^{\text {b }}$ and Takashi Shibahara ${ }^{\text {c }} \boldsymbol{\dagger}$

${ }^{\text {a }}$ Research Institute of Natural Sciences, Okayama University of Science, Ridai-cho, Okayama, 700-0005, Japan, ${ }^{\text {b }}$ Department of Chemistry, Osaka City University, Sugimoto, 558-8585, Japan, and ${ }^{\text {c }}$ Department of Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan

+ Additional contact author.
Correspondence e-mail: akashi@ric.ous.ac.jp

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{N})=0.008 \AA$
Disorder in main residue
R factor $=0.044$
$w R$ factor $=0.117$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Pentaamminenitrosylchromium(III) dichloride

The cation in the title compound, $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$, is distorted octahedral with a linear $\mathrm{Cr}-\mathrm{N}-\mathrm{O}$ moiety. The short $\mathrm{Cr}-\mathrm{N}$ (nitrosyl) distance of 1.692 (7) \AA indicates significant multiple bonding between these atoms. The Cr atom, the NO group and the N atom trans to NO have $m 2 m$ symmetry and the remaining N and Cl atoms have m symmetry.

Comment

This report is the first example of an X-ray structural study of a pentaamminenitrosylchromium complex, $[\mathrm{Cr}(\mathrm{NO})-$ $\left.\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, even though chromium complexes with Cl, Br, $\mathrm{NO}_{3}, \mathrm{ClO}_{4}, \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ and $\mathrm{OC}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}$ ligands have been characterized (Mori et al., 1963; Griffith, 1963; Kobayashi et al., 1969). The structure of the related compound $[\mathrm{Cr}(\mathrm{NO})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}$ (Ardon \& Cohen, 1993) has been reported. The results of $a b$ initio calculations on $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ have also been reported (Shim et al., 1995).

The title compound, $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ (Fig. 1 and Table 1), (I), was found to crystallize in the orthorhombic space group Cmcm with the Cr atom, the NO group and the N 2 atom, trans to NO, having $m 2 m$ symmetry imposing disorder in the $\mathrm{N}_{2} \mathrm{H}_{3}$ ammine group. The remaining N atoms and the Cl atom are at sites with m symmetry.

The $\mathrm{Cr}^{\text {III }}$ centre exists in a slightly distorted octahedral geometry with a strictly linear $\mathrm{Cr}-\mathrm{N}-\mathrm{O}$ arrangement (from symmetry). The N (nitrosyl) $-\mathrm{Cr}-\mathrm{N}($ ammonia, cis to NO$)$ angles are 94.2 (1) and $92.8(1)^{\circ}$ so that the $\mathrm{Cr}-\mathrm{N}$ (ammonia, cis to NO) bonds are slightly bent towards the ammonia molecule in the trans position to NO.

The short $\mathrm{Cr}-\mathrm{N}$ (nitrosyl) distance of 1.692 (7) \AA indicates the presence of multiple bonding between these atoms. A short $\mathrm{Cr}-\mathrm{N}$ (nitrosyl) distance of $1.682(2) \AA$ was also reported for $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ (Ardon \& Cohen, 1993). The $\mathrm{Cr}-\mathrm{N}($ ammonia $)$ distances in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are $2.070(8) \AA$ (Clegg, 1982) and 2.085 (10) A (average; Dieterich \& Stráhle, 1993). These are close to those of $\mathrm{Cr}-\mathrm{N}($ ammonia, cis to NO) in $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$.

The O(nitrosyl) atom appears to form hydrogen bonds with both H3 and H4 of adjacent ammonia molecules, with distances and angles as shown in Table 2.

Experimental

The preparation of $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ was carried out according to the literature method (Mori et al., 1963). Crystals of $[\mathrm{Cr}(\mathrm{NO})-$ $\left.\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ were obtained by recrystallization from aqueous hydrochloric acid.

Received 14 May 2001 Accepted 2 August 2001 Online 10 August 2001

Crystal data

$\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$
$M_{r}=238.06$
Orthorhombic, Cmcm
$a=10.0236(9) \AA$
$b=9.098$ (3) A
$c=10.357$ (1) \AA
$V=944.5(5) \AA^{3}$
$Z=4$
$D_{x}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.62 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation \& Rigaku Corporation, 1999)
$T_{\text {min }}=0.587, T_{\text {max }}=0.707$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.117$
$S=0.83$
601 reflections
34 parameters
D_{m} measured by flotation
Mo $K \alpha$ radiation
Cell parameters from 1131 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Prism, orange
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

5457 measured reflections 601 independent reflections 389 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-11 \rightarrow 12$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 11$

H -atom parameters not refined $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.034 P^{2}\right]\right.$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cr} 1-\mathrm{N} 1$	$1.697(7)$	$\mathrm{Cr} 1-\mathrm{N} 4$	$2.087(4)$
$\mathrm{Cr} 1-\mathrm{N} 2$	$2.126(7)$	$\mathrm{Cr} 1-\mathrm{N} 4^{\mathrm{ii}}$	$2.087(4)$
$\mathrm{Cr} 1-\mathrm{N} 3$	$2.085(4)$	$\mathrm{O} 1-\mathrm{N} 1$	$1.179(8)$
$\mathrm{Cr} 1-\mathrm{N} 3^{\mathrm{i}}$	$2.085(4)$		
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 2$	180.0	$\mathrm{~N} 3-\mathrm{Cr} 1-\mathrm{N} 3^{\mathrm{i}}$	$171.4(3)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 3$	$94.3(1)$	$\mathrm{N} 3-\mathrm{Cr} 1-\mathrm{N} 4$	$89.79(1)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 4$	$92.9(1)$	$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{N} 4^{\mathrm{ii}}$	$174.3(3)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 3$	$85.7(1)$	$\mathrm{Cr} 1-\mathrm{N} 1-\mathrm{O} 1$	180.0
$\mathrm{~N} 2-\mathrm{Cr} 1-\mathrm{N} 4$	$87.1(1)$		

Symmetry codes: (i) $1-x, y, z$; (ii) $x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.75	$3.302(6)$	118
$\mathrm{~N}^{\mathrm{iii}}-\mathrm{H} 3^{\mathrm{ii}} \cdots \mathrm{O}^{\text {iii }}$	0.95	2.75	$3.302(6)$	118
$\mathrm{~N} 4-\mathrm{H} 6 \cdots 1^{\text {iv }}$	0.95	2.89	$3.211(5)$	101
$\mathrm{~N} 4-\mathrm{H} 6^{\mathrm{ii}} \cdots \mathrm{O}^{\text {iv }}$	0.95	2.89	$3.211(5)$	101
$\mathrm{~N}^{\mathrm{v}}-\mathrm{H} 6^{\mathrm{v}} \cdots \mathrm{O}^{\text {vi }}$	0.95	2.89	$3.211(5)$	101
$\mathrm{~N}^{\mathrm{v}}-\mathrm{H}^{\text {vii }} \cdots \mathrm{O}^{\text {vi }}$	0.95	2.89	$3.211(5)$	101

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (ii) $1-x, y, z$; (iii) $\frac{1}{2}+x, y-\frac{1}{2}, z$; (iv) $x, 1-y, \frac{1}{2}+z$; (v) $x, y, \frac{3}{2}-z$; (vi) $x, 1-y, 1-z$; (vii) $1-x, y, \frac{3}{2}-z$.

All the H atoms were fixed in the refinement with isotropic displacement parameters set at 1.2 times the value of the equivalent isotropic displacement parameter of their carrier atom. Since the N2 atom is at a site with $m 2 m$ symmetry, the six disordered H atoms of the ammonia molecule have been developed by mirror symmetry.

Data collection: CRYSTALCLEAR (Rigaku, 1996); cell refinement: CRYSTALCLEAR; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku Corporation, 1999); program(s)

Figure 1
The structure of the $\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ cation. Displacement ellipsoids are plotted at the 50% probability level (Johnson, 1976). For clarity, only three out of the six disordered H atoms of the ammonia molecule trans to NO developed by mirror symmetry are shown.
used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was partly supported by a Grand-in-Aid for Scientific Research (No. 12640548) from the Ministry of Education, Science, Sports and Culture of Japan and by a Special Grant for Cooperative Research administered by Japan Private School Promotion Foundation. The authors wish to thank Mr R. Iwakura and Miss M. Nishiura for preparative work.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ardon, M. \& Cohen, S. (1993). Inorg. Chem. 32, 3241-3243.
Clegg, W. (1982). J. Chem. Soc. Dalton Trans. pp. 593-595.
Dieterich, S. \& Stráhle, J. (1993). Z. Naturforsch. Teil B, 48, 1574-1580.
Griffith, P. W. (1963). J. Chem. Soc. pp. 3286-3291.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kobayashi, H., Tujikawa, I., Mori, M. \& Yamamoto, Y. (1969). Bull. Chem. Soc. Jpn, 42, 709-715.
Molecular Structure Corporation \& Rigaku Corporation (1999). TEXSAN. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Mori, M., Ueshiba, S. \& Kawaguchi, S. (1963). Bull. Chem. Soc. Jpn, 36, 796798.

Rigaku (1996). CRYSTALCLEAR. Rigaku Corporation, Akishima-shi, Tokyo, Japan.
Shim, I., Gingerich, A. K., Mandix, K. \& Feng, X. (1995). Inorg. Chim Acta, 229, 455-460.

